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ABSTRACT

In this work we investigate novel approaches for information pro-
cessing and representation in a sensor web. Sensor nodes capture
information that is both temporally and spatially correlated. Ex-
ploiting spatial correlation requires data exchange between sen-
sors, which should be minimized in order to keep power consump-
tion low and maximize the life of the system. We are investigat-
ing methods for sampling (which sensors should make measure-
ments), routing (how does the information flow towards a fusion
center), processing (how to perform a wavelet transform along a
network route) and compression (how to compress the output of
the wavelet transform). All of these aim at maximizing the qual-
ity of the data available at the fusion center for a given energy
consumption target at the nodes. In this paper we will report algo-
rithmic, analytical and implementation progress made in this work
over the last year.

1. INTRODUCTION

Wireless sensor networks (WSN) can offer mobility and versatility
for a variety of applications, such as object detection/tracking, en-
vironment monitoring and traffic control [4]. Still, one of the main
obstacles they face is that they often rely on batteries for power
supply; thus limiting their energy consumption becomes essential
to ensure network survivability.

When data is acquired at multiple correlated sources, aggre-
gation involving in-network data compression can offer a more ef-
ficient representation of measurements, significantly reducing the
amount of information that needs to be transmitted over the net-
work, thus leading to a potentially large reduction in energy con-
sumption. Prior work has addressed a number of distributed source
coding (DSC) methods as a means to decorrelate data. While some
rely on information exchange and additional computation inside
the network to propose distributed versions of transforms, such as
Karhunen-Lòeve [16] and wavelets [25], others propose schemes
that do not require internode communication, such as networked
Slepian-Wolf coding [11, 23]. In general, DSC techniques face a
trade-off between i) more processing at each node to achieve more
compression and ii) less processing which would require more in-
formation (bits) to be sent to the sink. This trade-off has also been
addressed by previous research. [22] provides an analysis on the
regions in a network that should favor compression over routing
based on the impact of spatial correlation of the measurements.
The performance of aggregation under a more general data model
is considered in [18].
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Our focus has been on the problem of finding an optimal as-
signment of compression algorithms to nodes, in the sense of min-
imizing the energy consumption, when different methods are avail-
able to choose from. Since the distortion/energy consumption trade-
off also depends on factors such as network topology and medium
characteristics, different coding methods may be better suited for
different parts of the network. These methods can consist in sim-
ple coding schemes such as DPCM, or more complex ones, such
as wavelet transforms with an arbitrary number of levels of decom-
position.

The basic trade-off we have investigated is in the selection of
number of levels of decomposition for a wavelet transform, but the
same principle can be extended to other classes of signal represen-
tation and compression. We seek to achieve efficient signal com-
pression by exploiting spatial signal correlation (e.g., temperature
measurements in neighboring nodes in a sensor network will tend
to be similar). In general, coding schemes that remove correlation
across multiple nodes will tend to lead to higher coding efficiency,
but at the cost of increased “local” communications, i.e., a dis-
tributed approach means that nodes have to exchange data before
the final compressed version (which is sent to the fusion node) can
be generated.

Prior work within our team [6–9] led to the development of
a distributed wavelet transform, where data is forwarded along
routes towards the sink and each node contributes to data decor-
relation (and more efficient compression) by performing wavelet
transform operations on some of the data passing through it. In
particular, our work proposed techniques (based on dynamic pro-
gramming) to optimize the choice of wavelet transform for a given
routing structure [8] and then demonstrated that improved over-
all performance could be achieved by selecting jointly routing and
wavelet transform [9].

This paper describes our recent progress in extending, under
funding from the NASA-ESTO AIST program, the system pro-
posed in [9]. Section 2 provides a brief description of our original
distributed wavelet transform tools. Where simplifying assump-
tions were made in the original system we now consider extensions
that in some cases lead to very significant performance improve-
ments. Originally, no entropy coding was used on the quantized
wavelet coefficients and the same number of bits were used for all
wavelet coefficients of a given type (e.g., all low pass coefficients
were assigned the same number of bits). We are investigating en-
tropy coding techniques optimized for our system (Section 3) as
well as bit allocation tools (Section 4) that allow us to assign num-
ber of bits in a much more flexible manner. While in our previous
work we simply considered standard 1D wavelet transforms and
adapted them to our scenario, we are now considering extensions
to allow 2D filtering (Section 5) and to more closely link filtering
and routing design via compressed sensing (Section 6). We also



consider the design of erasure-correcting codes to ensure reliable
delivery in our system (Section 7). We have already started imple-
menting various aspects of the system using programmable sen-
sors with an eye towards testing our system both in-lab and within
a small scale real-life deployment (Section 8). To conclude, we
summarize the project status briefly in Section 9.

2. BASELINE SYSTEM

In [6,7] we introduced energy-aware distributed wavelet compres-
sion algorithms for WSN [6] and introduced a partial coefficient
approach based on the lifting implementation [7]. Our goal was
to generate the wavelet transform coefficients at the sensors, at
the expense of a little extra energy spent with a few “local” trans-
missions, i.e., data transmissions between neighboring nodes that
are needed to actually compute the wavelet transform coefficients,
since the transform operates by filtering “across nodes”. If the
original data has sufficient spatial correlation, after quantization
the wavelet coefficients can represent the original measurements
using fewer bits, and the overall energy consumption in the net-
work is lowered by reducing the amount of information that has
to be transmitted. Our proposed partial coefficient approach [7]
essentially allows all wavelet transform operations to be causal, in
the sense of that data is processed as it is being forwarded to the
central node, so that only data from nodes already traversed is used
to compute the wavelet coefficients. This requires the computation
and quantization of “partial” coefficients, which are transmitted
over a few hops, before being used to generate the final wavelet
coefficients.

We assume that a sensor network acquires measurements from
a correlated data field. We consider data aggregation (compres-
sion) along a 1-D path from an edge to the sink (Fig. 1). This
path is assumed known, which implies that a routing algorithm
has been applied to the network first. Each sensor is assigned a
numbern, starting from the edge. The network topology (intern-
ode distances) is known, and each node in the 1-D path can operate
using a coding scheme chosen from a predefined set of available
coding schemes. In [8, 9], available schemes are discrete wavelet
transforms using the same filterbank but with different number of
levels of decomposition: when the number of levels decomposition
is increased, the potential compression efficiency also increases (if
data is highly correlated across sensors), but at the cost of more lo-
cal information exchange (because data from more nodes is needed
to compute some of the wavelet coefficients).

... ...
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Fig. 1. 1-D path with M nodes to the sink.

Since the wavelet transform is critically sampled, the number
of wavelet coefficients generated is equal to the number of nodes.
Using the partial coefficient approach [7], the wavelet coefficient
corresponding to noden is computed in steps: at noden a partial
version of the coefficient is first generated, which becomes a full
coefficient as it “incorporates” additional data from future nodes
(i.e., nodes closer to the sink). The number of hops required until
a partial coefficient becomes full depends on the specific transform
filters being used, refer to [7] for details.

It can be shown [8] that costs can be attached to each possi-
ble coding strategy for a given node (number of bits and number
of levels in the wavelet decomposition). Because of the structure
of the problem, it can also be shown that costs for a given node
depend only on the physical position of the node in the network
and the coding scheme being used. Therefore, choosing the best
coding strategy leads to solving for the minimal cost path in a
state transition diagram that represents the various coding meth-

ods [8]. The optimal solution can be found using dynamic pro-
gramming [10].

The gains achievable by selecting the best coding scheme are
illustrated by testing an input process data that was created using a
second order AR model, with poles placed such that a reasonably
smooth output would be generated from white noise (poles were at
0.99e±j π

64 ). Figure 2 shows the energy consumption of different
single-scheme methods (only one coding scheme for the whole
network) at different distortion levels, in a network with 3 clusters
of 5 sensors each (internode distance of 2m, intercluster distance
of 37m).

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

x 10
7

20

30

40

50

60

70

80

90

SNR vs. Cost

Cost

SN
R

2−level 5/3 Wavelet
1−level 5/3 Wavelet
Raw Data Transmission
Optimum Network

Fig. 2. Energy consumption comparison between methods with 3 clusters
of 5 sensors each.

For this network, the optimum configuration such that energy
consumption is minimized, obtained by the proposed dynamic pro-
gramming framework is shown in Fig. 3.

2-lvl 1-lvl

Fig. 3. Optimum network configuration obtained for simulation in Fig.2.

Although the results suggest changes for just a few sensors
when compared to the best single-scheme method, in general, such
a behavior cannot be predicted beforehand. Network performance
can be affected by a number of factors like the coding schemes
being used, network topology, number of sensors, medium prop-
erties, data correlation, just to cite a few. Thus, a single-scheme
approach might not necessarily result in the near-optimal perfor-
mance. Optimization still proves to be necessary to point out the
configuration that will lead to the lowest energy cost. For the sim-
ulated case shown in Figure 2, for same distortion levels, the op-
timum network consumed around 6% less energy than the best
single-scheme method of Figure 2 (1 level wavelet) and around
32% less energy than simple raw (quantized) data transmission.

3. ENTROPY CODING

Our previous work did not explicitly consider variable length en-
coding of the outputs of the distributed wavelet transform. Here
we address the task of using entropy coding to minimize the com-
munication cost between sensor nodes. To simplify our analysis,
we assume unidirectional transmission in a sequence of equally
spaced nodes with no path merges. In such a network, Figure 4
illustrates the information that must be communicated to com-
pute a distributed wavelet transform across nodes. Using a single
stage 5/3 integer wavelet transform, a pair of DWT coefficients
{y[2n], y[2n + 1]} are calculated as:



y[2n + 1] = x[2n + 1] − ⌊
1

2
(x[2n + 2] + x[2n])⌋

y[2n] = x[2n] + ⌊
1

4
(y[2n + 1] + y[2n − 1]) +

1

2
⌋.

Herey[2n+1] is the high-pass DWT coefficient,y[2n] is the low-
pass DWT coefficient, andx[i] is the sensor data input at node
i. Because communication is unidirectional (forward only), the
values ofy[2n] andy[2n+1] cannot be computed until node2n+
2.
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Fig. 4. Information that must be communicated in a dis-
tributed wavelet transform framework. The update quantities
{x[2n], x[2n + 1], y[2n− 1]} (in blue) are needed at node2n + 2
to calculate the new DWT coefficient pair; the history quantities
{y[0], y[1], · · · , y[2n − 2]} (in green) are the previously calcu-
lated DWT coefficients that must be relayed to the sink.

Information to be transmitted falls into two categories:up-
dateinformation needed to compute the new DWT coefficient pair,
andhistory information communicating the values of DWT coef-
ficients computed at past nodes. Our entropy coding task is to effi-
ciently encode a quantized version of the history and update infor-
mation. We assume that update quantities are encoded at higher fi-
delity (i.e., using a quantizer with a smaller stepsize) [6,7]. The is-
sue of selecting quantization stepsizes (bit allocation) is addressed
in Section 4.

At each even-indexed sensor node2n, the DWT coefficient
pair{y[2n − 1], y[2n − 2]} is calculated using the update quanti-
ties. The high-pass coefficienty[2n− 1] is quantized and encoded
directly; to encodẽy[2n − 2], the quantized version ofy[2n − 2],
the differencẽy[2n − 2] − ỹ[2n − 4] is computed and encoded
to exploit some of the remaining correlation. We assume that the
cost of computation at each node is much less than the cost of com-
munication. With this in mind, each node can perform the inverse
DWT using the quantized history information to produce estimates
of past sensor sample valuesx̂[i]. To encode the sensor input data
x[2n], the difference betweenx[2n] and x̂[2n − 2] is computed
and encoded using a variable length code.

For our variable length codes we use the family of Golomb
codes [19] [20]. Golomb codes are known to be optimal for ge-
ometric distributions of nonnegative integers [14]. An important
step in coding is to determine the value of the code parameterm
to minimize the average code length for a given distribution. We
adopt the sequential parameter estimation method used in LOCO-
I [31] image compression. In this method the parameterm is cho-
sen to be the smallest power of 2 that is greater than the average
absolute value of past observed sequence. In our framework, these
values are readily available as we decode the history information
from past nodes.

As an example, Figure 5 shows the expected transmission cost
at each node using this entropy coding strategy neglecting the over-
head cost of “learning” data statistics at earlier nodes. We can see
that the transmission cost for DWT history quantities dominates
the total cost at each node. Therefore it is more important to effec-
tively encode history quantities than update quantities. For many
sensor web scenarios the most relevant objective may be to min-
imize the maximum transmission cost at any node, which, in our
model, is the last node in the chain.
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Fig. 5. Example of transmission cost at each node using entropy
coding in a distributed wavelet transform framework.

Figure 6 shows the rate distortion performance achieved by
(a) the proposed entropy coding approach in a distributed wavelet
transform framework; and (b) simply entropy coding quantized
sample differences. The input source data are 12-bit integers pro-
duced as quantized version of a second order AR process with
poles at0.99e±jπ/64. The gap between the curves represents the
benefit of the combined distributed DWT and entropy coding ap-
proach compared to the simpler alternative.
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Fig. 6. Rate distortion performance comparing transmission cost
at the 20th node in a chain(a) using the proposed entropy coding
approach in a distributed wavelet transform framework, and(b)
simply entropy coding the quantized sample differences.

4. BIT ALLOCATION

We have been investigating new bit allocation techniques for our
distributed wavelet transforms. Standard bit allocation techniques
for wavelet transforms achieve optimal bit allocation via subband
coding. Given a particular filter bank (FB) structure withM syn-
thesis FB outputs, the variance of each output is computed and
used (possibly in conjunction with weighting factors as for bi-



orthogonal FBs [28]) to allocate bits to each subband using tech-
niques developed in [17]. Note that if data is sampled at regu-
larly spaced intervals, and if the information being gathered can
be modeled by a spatially stationary process, then the information
in each subband (e.g., all the low-pass wavelet coefficients) can
also be modeled as a stationary process, for which these standard
bit allocation techniques are well suited.

However, the placement of nodes in wireless sensor networks
is random and irregular in general. Existing techniques assign the
same number of bits to all coefficients corresponding to a sub-
band and cannot exploit the irregular sampling structure inherent
in wireless sensor networks. This motivates the need for a new bit
allocation technique that can adapt itself to any 2D deployment of
nodes. Our goal here is to develop a better generic bit allocation
technique for lifting transforms on irregularly placed nodes.

We propose a simple and intuitive solution to locally optimize
bit allocation. Rather than estimate the variance of each of the
M subbands produced by our filter, we can instead estimate the
variance (over time) of the wavelet coefficient corresponding to
each node. In this case we would haveN variance values forN
nodes rather thanM < N variance values for each subband. This
localizes the bit allocation and should lead to gains in coding ef-
ficiency. We can achieve further improvements in bit allocation if
we use locally adaptive filtering [5] in conjunction with the locally
adaptive bit allocation already discussed. Computing the variances
in this way leads to a bit allocation technique that is locally adap-
tive to any 2D wavelet transform and outperforms existing global
allocation techniques using subband coding. Figure 7 shows an
irregularly sampled 1D signal of length 500 with 50 unique sam-
ple points chosen randomly from 1 to 500. The Signal to Noise
Ratio (SNR) versus Energy Consumption (denoted as Cost) plot
on the right shows that Locally Adaptive Bit Allocation (LABA)
and Locally Adaptive Bit Allocation with Locally Adaptive Filter-
ing (LABA/LAF) are both superior to a global subband allocation
method.
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Fig. 7. Left shows a random irregularly sampled signal and right shows
the SNR versus Cost plot for the various bit allocation techniques.

In a similar spirit, we have also developed a bit allocation tech-
nique that is a slight variant on the technique developed in [17].
Instead of imposing a rate constraint, we constrain the total energy
consumption. Via standard Lagrange multiplier techniques, we are
able to derive a bit allocation scheme that is very similar in form
to the solution derived in [17] with the exception that the energy
consumption (a linear function of sum of squared distances along
each hop to the sink) per node is also accounted for implicitly and
is fixed. A comparison between the LABA scheme and this fixed
cost for minimum MSE scheme will be done for a unilateral 2D
transform in the following section, see Figure 9.

5. NEW DISTRIBUTED TRANSFORMS

We now consider improvements to our existing system by intro-
ducing novel transform techniques. The existing system essen-
tially uses a series of independent 1D wavelet transforms, with
one transform performed along each route in the network. Because
routes merge on their way to the sink, a simple differential encod-
ing is applied where paths overlap [5] so that overall data trans-
mission is reduced. However, this approach for “merging” two
1D transforms is suboptimal in that it is essentially non-critically
sampled, i.e., additional information has to be sent for each path
merge, whereas a critically sampled transform would require send-
ing only as many coefficients as there are nodes in the network. In
addition, this does not fully exploit data correlation across multi-
ple paths (particularly at merge points). The main advantages of
this approach are simplicity, and the fact that the transform is in-
herently tied to an efficient routing structure and is performed in a
unidirectional manner (no backwards data transmissions).

Other distributed 2D lifting transforms done in [15,29,30] can
achieve more data de-correlation and hence more efficiently coded
data since more than two neighboring nodes per node participate
in the transform as is the case in our existing system. However this
leads to situations where at some nodes data may need to be sent
away from the sink, resulting in backward data transmission. Such
transforms may also require nodes to transmit data to other nodes
that are not very close spatially, particularly at coarser levels of
decomposition. These transforms may improve coding efficiency
but do so at the expense of potentially much higher energy con-
sumption than our existing method. Clearly a balance between
increased coding efficiency for increased cost need be met.

Our goal in this work is to design a distributed 2D transform
that can be computed in a unilateral fashion along an efficient rout-
ing structure, thereby achieving our desired balance. The trans-
form should be critically sampled to avoid the overhead in [5,
7], while avoiding the higher cost associated with distributed 2D
transforms. A simple way to do this is to perform the same 1D
unilateral transform wherever paths do not overlap and to perform
a 2D transform wherever paths merge.

Consider the random sensor deployment with a shortest path
routing tree shown below in the left side of Figure 8. In order
to apply a lifting transform to such a network, we must first split
the nodes into even and odd nodes at each level of decomposition.
Note that the sets of even and odd nodes need not be equal for a
general lifting transform. Various methods of splitting the nodes
exist including use of Delaunay triangulations as in [12, 30]. One
drawback with these splitting techniques is that they are not well
matched to any particular routing tree. Some data exchange be-
tween nodes that are not connected in a given routing tree may
also be necessary, in some cases imposing large cost if nodes are
far apart.

One natural way to ensure that the transform is performed
along a routing tree is to split the nodes up according to their depth
in the tree with respect to the tree’s root node as in the right side
of Figure 8. In our case, the root node is the network sink. Using
this notion of splitting, we could assign nodes to be even (update)
or odd (predict) in one of two ways. Either nodes of odd depth are
odd nodes and nodes of even depth are even nodes, or vice versa.
Suppose we use the first splitting method. We then achieve a criti-
cally sampled transform that is perfectly aligned with the routing.
We call node A a child of node B and node B a parent of node A if
node A forwards its data to node B. We also call node A a neighbor
of node B.

A simple version of this transform works as follows at merge
points. For an even merge node we multiply its neighboring detail
coefficients by1

2
, sum, then add this sum to the merge node’s data.

For an odd merge node we multiply the raw data of its neighboring



Fig. 8. Shows the equivalent routing structures, where right figureindi-
cates how to decimate the transform. Nodes of odd depth are odd (1-4, 11,
12) and nodes of even depth are even (5-10).

nodes by− 1

4
, sum, then add this sum to the merge node’s data.

We can easily extend the partial coefficient approach developed
in [7] by computing and transmitting separate partial coefficients
for each coefficient at the merge node using the exact same com-
putations as in [7]. The parent of the merge node will then com-
plete the computation of the separate coefficients using computa-
tions detailed in [7]. A simple performance comparison is done
as shown in Figure 9. The data in this case is highly correlated
with 100 nodes randomly placed on a 600x600 grid. The unilat-
eral transform is clearly superior to our existing system, and even
more so when we employ the bit allocation scheme that achieves
minimum MSE for a fixed cost.
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Fig. 9. Left shows routing topology and optimum transform for each node
in the network. Right shows SNR versus Cost plots for existing methods
compared with new Unilateral 2D method.

6. COMPRESSED SENSING

A common characteristic of all the transforms described in the pre-
vious section is that they transmit at least one wavelet coefficient
per node for each sampling time. Thus the power consumption in
the system is directly proportional to the number of nodes. We are
also considering techniques that exploit known characteristics of
the data being measured to make it possible to encode less than
one coefficient per node on average.

To achieve this goal we are investigating the application of
compressed sensing (CS) techniques. CS is a promising method
that can reconstruct aK-sparse signal,x, with the size ofN from
M measurements of the signal [3, 13]. The measurements,y ∈
RM , are obtained via the linear matrix-vector multiplicationy =
Φx, with K ≪ M ≪ N . The measurement matrix (Φ) which

represents how the measurements are formed from samples is a
M × N matrix whose elements can be random coefficients such
as Bernoulli or Gaussian random variables.

To apply CS to wireless sensor network, we consider energy
consumption and routing, which previously has not been explicitly
taken into account in the context of CS. In most previous work in
the field of CS, the measurements are linear combinations of every
sample of input signal, i.e.,Φ is a full matrix. This approach can
not be directly applied to wireless sensor network due to its in-
herently high energy consumption. Based on the assumption that
energy is dissipated only during data transmission among sensors,
we need to design an algorithm that efficiently collects M mea-
surements then transmits them to the sink.

For energy efficiency, we consider a sparse measurement ma-
trix which contains a few non-zero random coefficients as its el-
ements for energy-efficiency. Previous work [24] has proposed a
new CS scheme using sparse measurement matrix similar to the
sparse parity check matrix in LDPC instead of full measurement
matrix. In that work, the sparse measurement matrix showed com-
parable performance to the full matrix in terms of the number of
measurements and the reconstruction quality [24]. Taking this idea
as a starting point, we are seeking to design an algorithm to con-
struct a sparse matrix which minimizes the energy consumption
due to data transmission as well.

The algorithm has to meet three requirements. First, each row
of Φ contains exactlyL non-zero entries (1 or -1). This means that
every measurement consists of the information fromL sensors.L
is chosen based on the properties of the signal that we are trying
to transmit (such as sparsity). Second, the non-zero entries are
uniformly distributed over columns; in other words, every sensor
has an equal chance to provide the information about its measured
data for measurements. Lastly, given inter-sensor distances, the
solution of the algorithm achieves minimum energy consumption.
For simplification, we assume that the energy consumption can be
evaluated as the product of the number of bits to be transmitted
and the squared distance to the sink.

7. ERASURE-CORRECTING CODES

A major challenge in networking the low-power low-capability ra-
dios of the sensor nodes is that many communication links will
be highly unreliable and lossy, showing asymmetry and large tem-
poral fluctuations, due to multipath fading effects and individual
hardware variance. We are investigating several approaches to im-
proving the reliability of network communications, including rout-
ing algorithms, network coding, and channel coding on individual
links. Our work to date has included an investigation of rateless
erasure-correcting codes suitable for application to node-to-node
links subject to large fluctuations in link availability.

Our link model is that transmissions between nodes are sub-
ject to erasures with unpredictable probabilitypǫ. Without coding,
erased transmissions are retransmitted to the next node until the
message gets through. This is efficient only if the sending node
knows which transmissions (or portions thereof) are erased. Com-
plicated erasure patterns require the use of complicated reverse-
channel link protocols to inform the sending node which transmis-
sions need retransmission. Alternatively, without knowledge of
when erasures occur, the sending node can transmit pieces of data
at random until the message gets through. This requires only a
simple acknowledgment protocol over the reverse channel, but in
this case the sending node needlessly retransmits non-erased data
as well as erased data. Either alternative can be very costly in terms
of the overall energy consumption of the two nodes.

Fixed-rate forward erasure-correcting codes offer a traditional
solution to providing reliable communication with minimal energy
consumption. However, when the link’s erasure statistics are un-



predictable, fixed-rate codes can spend too much overhead if the
channel is better than expected, or fail altogether if the channel
is worse than expected. A better solution is an erasure-correcting
code whose rate adapts to the actual link statistics.

A ratelessforward erasure-correcting code is one that commu-
nicates a fixed numberk of information symbols by transmitting
a variable numbern of coded symbols. Here a “symbol” can re-
fer to an individual data bit or to an entire data packet. Examples
of rateless codes are Luby’sLT codes[21], Shokrollahi’sRaptor
codes[26], Studholme and Blake’swindowed erasure codes[27],
andrandom rateless codes[27]. With a rateless code, the actual
number of transmitted symbolsn can vary according to the qual-
ity of the channel. Only a simple acknowledgment protocol is re-
quired over the reverse channel to tell the sending node when the
k information symbols are successfully decoded.

The inventors of LT and Raptor codes measure the overhead
k+ − k of a rateless code on a pure erasure channel in terms of
the number of coded symbolsk+ (out of n) that are successfully
received (not erased). LT codes and Raptor codes are asymptot-
ically optimal for channels with an arbitrary and unknown era-
sure rate. Such codes of unbounded input block size are capacity-
achieving in that they can achieve arbitrarily small frame erasure
probability with arbitrarily small percentage average overheads
ǫ =

`

E{k+} − k
´

/k as k → ∞. Large LT codes and Rap-
tor codes with practical finite input blocks can achieve extremely
small frame erasure probabilities with maximum average over-
headsǫ of a few percent. Smaller Raptor codes can achieve mod-
erately low frame erasure rates with maximum average overheads
of a few percent.

Random rateless codes can achieve zero frame erasure proba-
bility on the erasure channel with fantastically small average over-
headE{k+} − k < 1.61 symbols, even with small finite in-
put blocks, if they are decoded optimally using a “full-rank de-
coder” of much higher complexity than the decoder for LT or Rap-
tor codes. Windowed erasure codes mimic random rateless codes
but use a much sparser density of graph connections. They also
achieve very small average overheadE{k+} − k = 2 to 3 bits,
and require “full-rank” decoding. As with random rateless codes,
their average overhead is bounded by a small fixed number of bits
independent of the code block size. Decoding complexity of win-
dowed erasure codes is intermediate to that of LT or Raptor codes
and fully random rateless codes due to the built-in sparseness of
the code graph.

For our sensor web application, the relevant question is: What
is the best way to construct a rateless forward erasure-correcting
code that minimizes overhead – even for small input blocks – while
maintaining reasonable decoding complexity? Uncoded resends
are trivial to decode but are very inefficient, requiring on average
E{k+} ∼ k ln k non-erased transmissions to decodek symbols
successfully. LT and Raptor codes are reasonably easy to decode,
usingO(k ln k) or O(k) operations, and are much more efficient,
especially for large block sizes, requiringE{k+} to exceedk by
only a few percent. Windowed erasure codes are even more effi-
cient, requiringE{k+} to exceedk by only 2 to 3 symbols, even
for small code blocks, but their decoding complexity isO(k3/2).
Random rateless codes are the most efficient, withE{k+} exceed-
ing k by less than 1.61 symbols, but their decoding complexity is
O(k3). The best choices for our application are windowed erasure
codes if the nodes’ computational costs are trivially small relative
to their communication costs, or LT or Raptor codes if the compu-
tation and communication costs are more comparable.

8. IMPLEMENTATION

The hardware platform being used for in-lab implementation/testing
is the TMote Sky wireless sensor module [1]. It uses the 2.4 GHz

frequency for radio communication and has a data rate of 250
Kbps. The available RAM is 10 KB, program space is 48 KB and
external flash memory is 1MB. The output power can be varied
between -25 dB and 0 dB. Onboard sensors provide photo, tem-
perature and humidity measurements. The detail schematic of the
TMote Sky device is available online [2].

Our current in-lab implementation is based on the following
assumptions: i) 1-level 5/3 wavelet compression using lifting, ii)
Linear topology (fixed routing), iii) clear separation of epochs (a
single data value collected from each node in one epoch), iv) ar-
bitrary (configurable) bit allocation at each node, and v) nodes are
controlled from a command center (laptop). We have implemented
the distributed 1-level 5/3 wavelet using the the partial coefficient
equations proposed, with uniform quantization. However, this is
only for a single data sample per node in a linear topology with
known bit allocation. For concretely demonstrating compression
gains, additional components will be required as follows.

First, we will need to develop atraining phasewhere nodes
collect data samples/coefficients and route it to base station. The
base station then has to calculate the relative variance in the node
measurements and the optimal bit allocation based on the budget.
This allocation has to be propagated back to the nodes. The proce-
dure has to be repeated at certain intervals based on knowledge of
the phenomena/temporal variations expected. Alternately, nodes
can collect a specific number of samples/coefficients, calculate
range and variance information and send only this information to
the base station which will then propagate the bit-allocation back
to nodes. This will lower the communication cost for training.

Second, support ofmultiple levels of wavelet decomposition
will be needed, i.e., from the training data, the base station also
needs to determine if, and at which nodes, multiple levels of de-
composition will provide compression gains and propagate the same
back to the nodes.

Third, packetization/Stuffing strategiesneed to be developed
to group quantized coefficients into packets. Clearly, transmitting
packets with individual coefficients is inefficient. For obtaining
compression gains, it is required to pack the full/partial coefficients
into packets of known byte-lengths. The sensor measurements at
each node have to be accumulated and stored. When a packet con-
taining several partial coefficients is received from an upstream
node, the sensed values at the current node have to be combined
with the matching coefficients for the current lifting step. We are
investigating whether there is an optimal packet length and strate-
gies to operate withupdateandhistory, as described in Section 3.
Decoding previously transmitted data to predict newly acquired
one, and provide more efficient transmission ofupdateinforma-
tion, will incrase computation/delay at each node. Insteadhistory
information only needs to be relayed towards the base station and
creates minimal delay or computation overhead.

Last, we need to considerstorageissues when determining
where and how to store sensor measurements. There are two main
options. We could use RAM if a limited number of samples has
to be stored, with the advantage of fast and easy access. Alterna-
tively Flash storage may be considered if a large number of sam-
ples needs to be stored. Because of the delay implications this
would have, our various algorithms should be evaluated not only
in terms of computation and delay, but also in terms of their stor-
age requirements.

8.1. Collaboration plans

We are pursuing several avenues to define specific science envi-
ronments for which to customize our techniques and on which to
deploy simple test systems, if possible. In considering what is fea-
sible we are taking into consideration the capabilities of the motes
(our target sensor development and testing platform.) We are in



particular focusing on what can be done given the measurement
sensor types, communication ranges, etc. The JPL investigators
have started to develop a plan to select specific NASA applications
that could be suitable to demonstrate our techniques. Further, we
have identified a target environment for demonstrating the effec-
tiveness of our compression techniques. AIMS (Australian Insti-
tute of Marine Sciences) is deploying WSNs to monitor growth,
development and health of the corals at the Great Barrier Reef.
Our aim is to set up a long-standing (greater than 1 month) medium
size (50-100 motes) WSN test bed in conjunction with AIMS. The
plan is to implement and test joint routing and compression al-
gorithms for data collection from the test bed, in addition to non-
trivial tree construction and sleep scheduling algorithms developed
by ANRG.

9. CONCLUSIONS

In this paper we have provided an overview of a collaborative
project that is designing new approaches for gathering, compres-
sion and representation of spatially correlated data in a sensor net-
work. This project spans a range of issues, from signal representa-
tion and compression optimized for 2D irregularly sampled mea-
surements, to the design of efficient erasure codes to ensure reli-
able operation. We are working on a testbed system to validate our
designs.
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